

Treatment of Digester Gas

Tom Mossinger, PE
SCAP Energy Management Committee Meeting
February 28, 2013

Digester Gas Composition

- Approximately 60% CO₂
- Approximately 40% CH₄
- Water vapor saturated at 95-100 degrees F
 - Remains saturated as it cools releasing large amounts of water into piping and downstream equipment
- Trace levels of contaminants including H₂S and Siloxanes, greases, dirt, hair, etc.
 - H_2S varies from 50 to >10,000 ppmv
 - Siloxanes vary by site and are increasing over time
- Typical pressure: 2-12 inches w.c.

WEA-SFBS_GasTreatmentPres_02-07-12.pptx

Contaminants of concern

H₂S

- Forms by biological breakdown of organics in anaerobic conditions
- Typically present at levels of approaching 2000 ppmv if untreated
- Most air districts regulate H₂S in some way, typically gas must have levels reduced to < 200 ppmv

Siloxanes

- Organic Silicon compounds
- Derived from several common household products (shampoos, cleaning products, solvents, foods, etc.)
- Generally water soluble

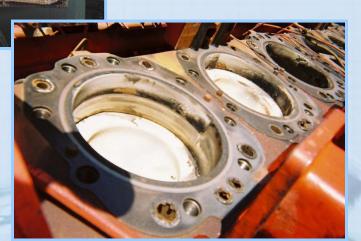
WEA-SFBS GasTreatmentPres 02-07-12.ppt

Consequences of Contaminants

H₂S

- Forms with water vapor both in the gas and in the combustion products to form H₂SO₄
- Health hazard
- Degrades lubricants
- Forms acidic compounds, causes corrosion


Siloxanes


- Causes hard abrasive "glass" like buildup on combustion equipment such as engine valves and pistons
- forms fine powdery "ceramic" like substance upon cooling which plugs boilers, heat exchangers, silencers, etc.
 - Insulates heat transfer surfaces greatly reducing effectiveness of equipment

Siloxane Damage

WEA-SFBS_GasTreatmentPres_02-07-12.ppt

Contaminant Detection

- Laboratory analysis
 - Various sampling and analysis methods
 - H₂S can be sampled with drager tubes, but not reliable to low levels
 - Requires upwards of a week for results for Siloxanes
 - Expensive; Typically \$500 to \$3,000+ for testing
- H₂S can be monitored with electrochemical gas diffusion sensors
 - Real time monitoring
 - typically used for controlling mercaptan level in natural gas
- Siloxanes can be monitored with on-line gas chromatograph
 - Near real time Siloxane and H₂S measurement

Value of Digester Gas Treatment

- Gas quality has direct impact on cost of maintenance
 - Cummins quotes maintenance as follows:
 - \$0.008/kWh for units operating on natural gas, or equiv.
 - \$0.020/kWh for units operating on digester gas with approximately 100 ppmv H₂S
 - Siloxanes are required to be removed for either
- Less frequent maintenance
 - Oil changes, spark plug life, O₂ sensors, overhauls

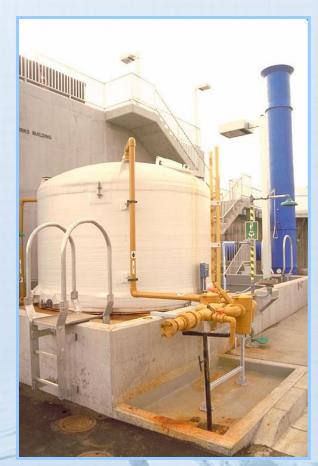
EA-SFBS_GasTreatmentPres_02-07-12.ppt

H₂S Treatment Options

- Iron sponge (adsorption)
- Ferric Chloride into process
 - Odor control in sewers or liquid process
 - Advanced primary treatment
 - Struvite control
 - Digester gas H₂S control
- Water stripping
- Biological removal
- Caustic Scrubbing/Oxidation
 - Biological oxidation
 - Chemical oxidation

Iron Sponge

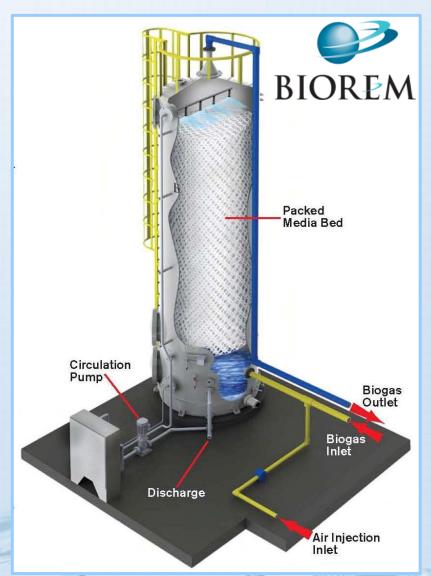
- Combustible
 - Exothermic reaction when oxidized
- Requires high degree of O&M (regeneration/replacement)
- High removal efficiency
 - Dependent on contact time and remaining "life" of media



MARCAB COMPANY, INC.

Ferric/Ferrous Addition

- Chemical storage/handling/delivery issues
 - Very corrosive
 - Expensive
 - Hazardous Chemical
- Process issues
- High removal efficiency
 - Dependent on quantity of chemical added
- Often used due to other process benefits


Water Stripping

- Large quantity of water required
- Shifts Sulfur compounds to water
 - Could present discharge permit issue
- Process and treatment plant capacity issues
- 80-85% removal efficiency

Biogas Biological Trickling Filter Treatment

- New technology to USA
- Requires active controls, biological process is pH sensitive
- Small amount of O₂ added to the digester gas
- 80-85% removal efficiency

Caustic Scrubbing/Chemical Oxidation Treatment

- Generally used for large systems; >1,000 scfm
- Requires complex active controls, process is pH sensitive
- 90-95% removal efficiency

Caustic Scrubbing/Biological Oxidation Treatment

- Generally used for very large natural gas processing systems; >5,000 scfm
- Requires complex active controls, process is pH sensitive
- 90-99% removal efficiency
- Produces elemental Sulfur which can be sold

Siloxane Treatment Options

- Adsorption
 - Carbon
 - Desiccant
- Remove water from gas (gas drying)
- Typically both are required due to quantity of Siloxane compounds in the gas

Siloxane Removal O&M Issues

- Costly media to replace
- Requires energy to regenerate
- Regeneration results in off-gas that must be eliminated
 - Flared; results in loss of 5-10% of digester gas
 - Thermal Oxidizer
 - Microwave disintegration
- Energy costs for moisture removal

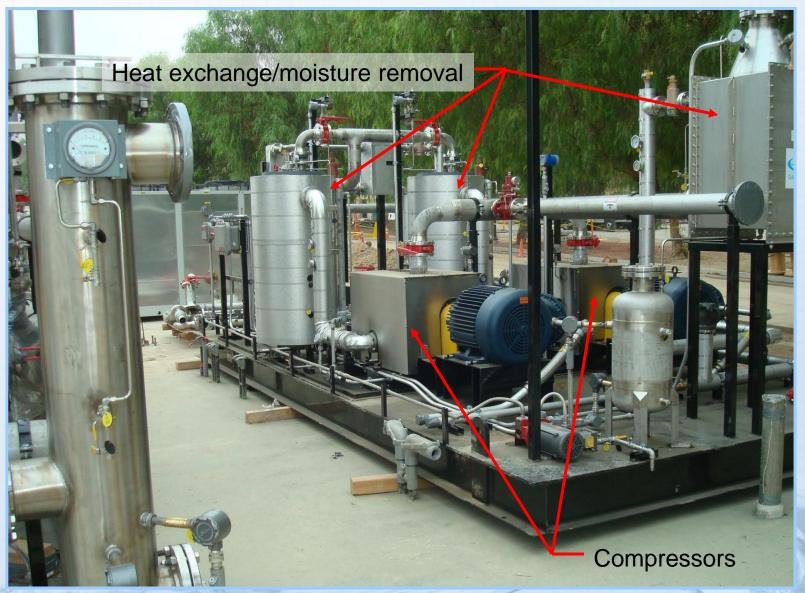
Carbon Based Systems

- Very common 100's of systems in use
- Highly porous adsorptive engineered media
- Most effective when moisture is controlled
 - 30-70% relative humidity recommended
- 95+% removal efficiency

Desiccant Based Systems

- Generally meant for large systems
 - Typically >1,000 scfm
 - Applicable size quickly coming down
- Regenerable media reduces replacement costs
- 90-95% removal efficiency
 - Does not respond well to spikes
- Generally followed by Carbon to polish

City of Chico WWTP - Fuel Conditioning **System for an Engine** H₂S Removal Vessels



EMWD Moreno Valley RWRF – Fuel Conditioning System for Fuel Cells

-SFBS_GasTreatmentPres_02-07-12.pptx

EMWD – Gas Conditioning/Compression

City of Tulare – Fuel Treatment System

A-SFBS GasTreatmentPres 02-07-12.ppt

Fuel Treatment Key Issues

- Redundancy in media
 - Dual vessel trains for both H₂S and Siloxane removal
 - Switchable lead/lag operation
- Redundant or spare long lead components
- Flow control to prevent channeling
- Maintainability
- Flexibility to adapt to digester gas changes
- Contaminant monitoring to minimize risk of breakthrough

Thank You