City of Colton Regional Biosolids Processing and Renewable Energy Project

Presentation to: SCAP Energy Committee October 22, 2009

Presenters:

Jim Sullivan and Tudor Williams

Biosoils of Southern California LLC

Long-term Biosolids Management Waste to Energy

Proven Technology

- No Proprietary or experimental processes
- Green Solution that really works
 - Biosolids and Biogas fuel sources -
- Lowered dependence on Remote locations
 - Colton is within 70 miles of most POTW's
 - Lower Freight and overall costs
- Potentially the lowest cost option ...

Biosolids Disposal

Renewable Energy Power Generation – 0% to date

Figure 4: MANAGEMENT OF BIOSOLIDS IN CALIFORNIA, 2003

Why is the Project Unique?

Regional Solution to a Regional Issue

- Not exporting our problems other Counties or States
- Ash residue will be used at neighboring
 Cement Mill as a raw materials resource.
- Heavy metal removal and recycling
 - No future liability from new regulations on contaminated site

- 100% redundancy for process Backups

Power Generation

Steam Turbines

- Steam derived from boiler at the Fluidized Bed
- Organic Rankin, bi-phase turbine
 - Uses low grade heat to maximize output
 - Physically small units that can be added as conditions and requirements may dictate
- Heat source Fluidized Bed , using Biosolids and Biogas as fuel sources

Biosolids Material Delivery and Processing Steps in Biosoils Facility

Delivery of Biosolids

 Biosolids collected from POTW customers and delivered by truck to tipping floor within enclosed building in Facility

Biosolids conveyed to Dryers and Fluidized Bed Thermal Units

Heat Uses in Process

- Captured Heat used to provide heat for Dryers
- Captured Heat used to produce steam that is converted to renewable electric power in Steam Turbine
- Recovered Ash from Fluidized Bed combustion and air emission devices delivered to cement manufacturers for use as batch material
 - Good properties for making cement

Tipping / Receiving facility

Facility Location

Proposed Facility Site Plan

Biosoils Facility Side Elevation (Without Visual Screening Shown)

Colton Biosoils Facility With Visual Screen

Technology Used in the Facility

Dryers

 Steam operation, use on Biosolids and other waste materials at other locations in the United States. Flexible, redundant system allows for changes in moisture content of Biosolids.

Fluidized Bed Units

 Numerous installations of fluidized bed units worldwide, operating on Biosolids. Drier solids produce more power

Steam Turbine

- Experienced Supplier of Steam Turbines. Expandable power plant.
- Rankin-Organic turbines use lower grade heat sources

Special Features of the Biosoils process

- Proven technologies is integrated into the system
- Techniques used to harness and use the available energy in the process
- Equipment used to achieve low emission levels from the Facility.

Biosoils Facility Equipment Placement

Cleanest Emitting Facility of Its Type in the World

- When completed Facility will meet most stringent air quality requirements in the world
 - South Coast Air Quality Management District (SCAQMD)
- Air Quality is Most Critical Standard Required to be met in Permitting Process
 - Issued in connection with Amended CUP and Building Permit
- Facility Will meet Tier 3 Health Risk Assessment Modeling Required by EPA and SCAQMD
 - Potential Expansion of Facility to 2,400 wet tons per day capacity @ 18.5% solids also projected to meet Tier 3 Health Risk Assessment
 - Environ International conducted Health Risk modeling
 - Key Emissions Evaluated: NOx, Particulate Matter, SOx, Metal Compounds

Unique Features of Biosoils Process for Facility to Meet Stringent Requirements of SCAQMD

Air and Odors Captured in Tipping Floor Building

 All air and odors captured, re-circulated and used as combustion air in Fluidized Bed or captured by emission and odor control device

8 separate emission control steps used in Fluidized Bed system

- Bed material for H2S
- Urea for thermal de nox
- Multi clone for large particulate removal
- Bag house for particulate removal
- Wet scrubber for vapor condensation
- Electrostatic precipitator for condensed particles
- Catalyst for Nox polish
- Activated Carbon for trace metals removal
- Stack for dispersion

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

Standard Evaluation Format

APPLICATION EVALUATION AND CALCULATIONS

PAGES	PAGE							
17	7							
PREPARED BY Marie E. Cameron, CPP#M6054								
DATE	SCAQMD use only							
04/28/2009	APPL NO.							

Table 1. Summary of Criteria Pollutant Emissions

Criteria Pollutant	AHU Ibs/hr	AHC Ibs/hr	MHU lbs/hr	MHC Ibs/hr	MDU Ibs/day	MDC Ibs/day	30DA Ibs/day	AA Ibs/yr	AA tons/yr	PTE tons/yr
СО	11	11	11	11	266	266	266	96,930	48.46	48.52
NOx	134	2	134	2	3,221	45	45	16,459	8.23	8.23
VOC	2	1	2	1	56	22	22	7,942	3.97	3.97
PM ₁₀	2,591	1	2,592	1	62,202	22	22	7,955	3.98	3.98
SO _x	799	1	799	1	19,182	22	22	7,941	3.97	3.97

Biosoils Development Team Members

Substantial Capability of Biosoils A & E Team

Austin/AE Com and Metcalf & Eddy/Lyles Construction

- \$2.5 billion per year employee-owned architectural, engineering and construction firm – now one of world's largest
- Will become Engineering, Procurement and Construction contractor for Biosoils of Southern California LLC project
- Has the required Performance and Completion bonding capacity for \$100 million project
- Has prior experience in water, wastewater plants and in energy production facilities
- Metcalf & Eddy is 100 year old nationally recognized wastewater engineering firm that is one of AE Com group of companies and that will provide engineering to Austin/AE Com for Biosoils project

The Contract

- > We want to partner with the POTW.
 - As our costs reduce the savings will be passed through
- Facility design allows for doubling of capacity without substantial capital costs
- 20 years and the costs are very low...

Tipping Fees

Colton Project Economics dollars per ton

Tons/day	1,200			2,400	2400 Project		2400
Power plant size kw	2,634			5,668	22400 year 21		22400
percent solids	18.5%			18.5%	90%		90%
Income per year							
Interest Income	\$ 0.84	Û Q		0.42	\$ 0.42		\$
power Income	\$ 5.18	ja V		5.18	\$ 21.64		\$ 21.64
carbon credits	\$ 1.25	\$	\$	1.25	\$ 1.25		\$ 1.25
Tipping fee Income per ton	\$ 60.00	Ş	ò	36.00	\$ 24.00 18	.5%	\$ 4.22
total Income per ton	\$ 67.27	\$	\$	42.12	\$ 46.67 equival	ent	\$ 27.11
Cost per wet ton							
Interest on reserve	\$ (0.84)	Ś	ò	(0.42)	\$ (0.42)		\$
power income	\$ (5.18)	ŝ	\$	(5,18)	\$ (21.64)		\$ (21.64)
carbon credits	\$ (1.25)	8	\$	(1.25)	\$ (1.25)		\$ (1.25)
Depreciation 15yrs-20yrs	\$ 17.17	e e	\$	8.58	\$ 8.58		\$
operational expenses	\$ 27.57	ş	\$	22.03	\$ 23.65		\$ 23.65
Bond Interest	\$ 20.89		è	10.45	\$ 10.44		\$
equity principle	\$ 0.35		5	0.17	\$ 0.17		\$ 0.17
equity interest	\$ 0.02	Ś	\$	0.01	\$ 0.01		\$ 0.01
Bond Principal	\$ 5.71	\$	\$	2.85	\$ 2.85		\$ -
Total expenses	\$ 65.96		\$	41.22	\$ 42.84		\$ 23.83
pretax profits	\$ (0.97)	Ş	Ş	0.20	\$ 3.10		\$ 3.10
Total cost per ton	\$ 59.33		\$	36.09	\$ 24.06		\$ 4.22

equivalent

Thanks for Listening!

Tudor Williams Jim Sullivan Biosoils of Southern California LLC (909)910-0520 or (213) 628-8312 E-mail: Jim@biosoils.com