BIOFILTERS for Emission and Odor Control

Renee Groskreutz, P.E. CH2M HILL

SCAP Biosolids Workshop September 28, 2004

Overview

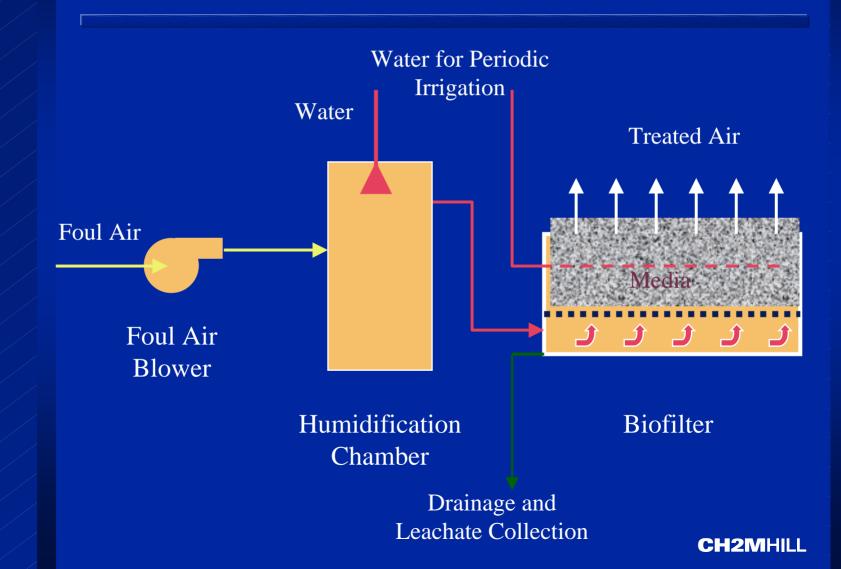
- Why Biofiltration for Odor Control?
- What is the Biofilter Process?
- What key issues should we consider when Designing and Operating?
- What are the typical H₂S and odor removal rates of a biofilter?

Introduction

 Biofiltration - sustainable treatment technology

 uses natural biological processes
 uses natural media materials
 no environmentally harmful by-products

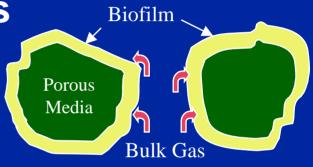
• Examples in So Cal: LVMWD, IEUA, LACSD, and others

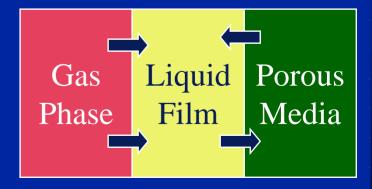

Why Biofilters?

 Environmentally friendly compared to other odor controls:
 – chemical scrubbers use hazardous chemicals (e.g. caustic, hypochlorite)
 – spent activated carbon may require

disposal as hazardous waste

 thermal oxidizers use fossil fuels which generate greenhouse gases


Simplified Biofilter Schematic


The Process in the Bed

Three-phase Process

 Transfer of contaminants from gas
 to liquid

- Biodegradation in liquid
- Transfer of nutrients from media to liquid
- Transfer of contaminants from liquid to solid

Process Description

- In simple terms: Biofilters are described as a biofilm system
- Behind the scenes: Biofilters are a complex adsorption, absorption, biological oxidation system
- Take home: Biofilters are a system designed and operated to support a healthy microbe colony that consumes odorous compounds

CH2MHII I

Biofilter Examples

Design and Operating Considerations

- Sizing a Biofilter
- Media Selection
- Air Distribution
- Moisture Control
- Pre-engineered systems

Sizing a Biofilter

- Empty Bed Residence Time (EBRT)
 - EBRT required depends on the odorous compound (s) and type of media
 - Typical WWTPs = H_2S , low level reduced sulfur organic compounds

$$EBRT = \frac{A \times D}{Q}$$

$$LR = \frac{Q}{A}$$

- A = surface area of biofilter
- D = depth
- Q = flowrate
- LR = Volumetric Loading Rate

Example EBRTs

 Simple Organic Media systems = 45 to 60 seconds

3 to 6 cfm per square foot volumetric loading rate (LR)

 Simple Soil based systems = 60 to 120 seconds

- 1.5 to 3 cfm per square foot

- High rate Organic Media systems = 30 to 45 seconds
 - 5 to 15 cfm per square foot surface

Biofilter Media Selection Has Major Impacts

- Microorganisms
- Moisture Control
- Nutrient Supply
- Media Stability
- pH (buffering)
- Foul Air Residence Time Requirements
- Pressure Drop

Media Selection

Types of media

- soil

- long life, relatively low loading rates
- organic
 - replacement 2 to 5 years, higher loading rates
- synthetic
 - usually component of mix, site specific

CH2MHILI

Air Distribution

Air Flow Distribution Plenum with distribution plate Perforated piping

Checking Air Distribution in Constructed Biofilter

 Smoke Test to show even distribution of air stream

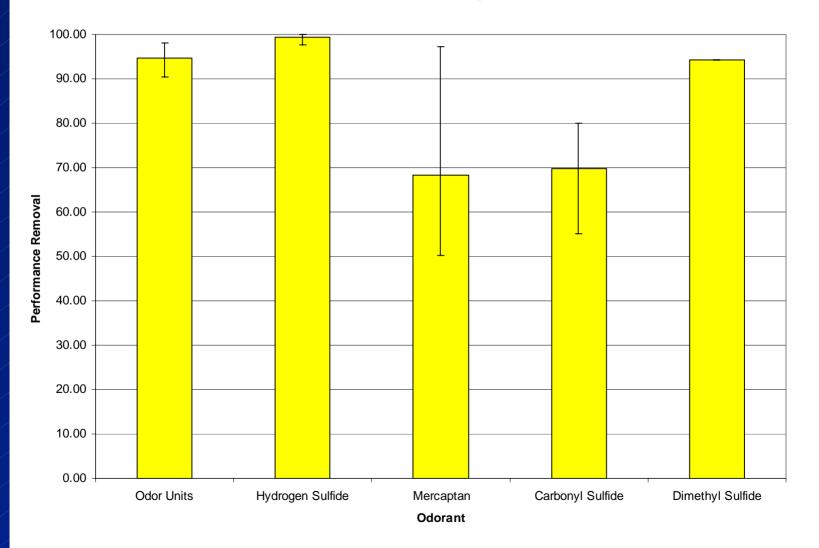
Moisture Control

Moisture Control

- Typical range 50% to 65%
- Prehumidification
 - humidification chambers
 - duct sprays
- Bed irrigation
 - soaker hoses
 - surface sprays

Moisture Control (critical)

- Top irrigation alone is not considered sufficient, preconditioning the air as it enters is recommended
- If moisture is not controlled, then organic based media can have the following tendencies:
 - can be prone to shrink and swell
 - crusting, short circuiting, dead zones
 - can be hydrophobic if dried (difficult to rewet)


Vendor Biofilter Systems (Modular Pre-engineered)

- Ambio
- Bay Products
- Biocube
- Bioreactor
- Biorem
- Bioton
- Envirogen
- Zabocs
- others

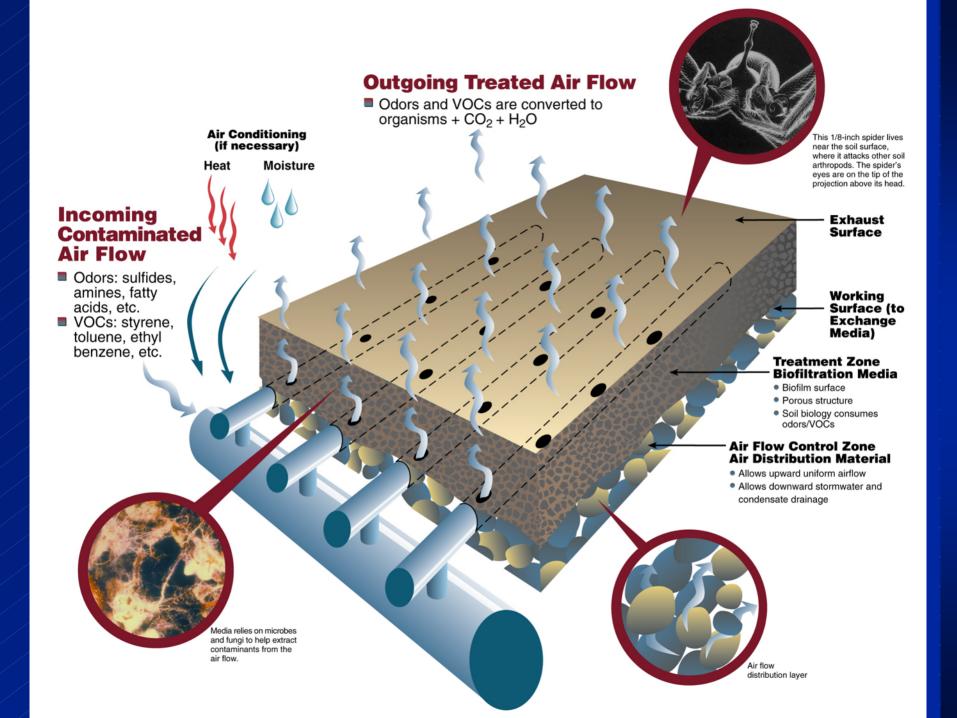
- \Rightarrow Typically for smaller applications.
- \Rightarrow Proprietary media
- \Rightarrow Specialized moisture control system
- \Rightarrow Modular design for biofilter containers.

Performance Data for Organic Media

Performance Data for Organic Biofilter

Biofilters

Advantages


- Low maintenance
- No Chemicals
- Very effective for a wide range of compounds
- Low Cost relative to other odor control technologies

Disadvantages

- Can be land intensive
- Can short circuit if poorly designed
- Organic Media will decay and compact over time
- Difficult to <u>completely</u> avoid musty biofilter smell

Conclusions

- Successful biofilter requires careful:
 - Media selection
 - Moisture control
 - Airflow distribution
- Correctly designed and maintained biofilter will provide:
 - High removal efficiencies for odor and H₂S
- Biofilters are routinely selected as technology of choice due to ease of operations and proven performance

