

Lessons Learned from Large Agency SSO Reduction Programs

Michael Flores, HDR

FCS

Southern California Alliance of POTWs – Collection System Committee *March 29, 2016 - Irvine, CA*

© 2014 HDR, all rights reserved.

Today's Agenda

2

Risk-Based Maintenance Optimization

The Situation

- High SSO rate
 - $_{\odot}$ Roots, grease, debris
- High regulatory risk
- Limited resources
- Data overload
 - \circ Quality?

The Goal

LOS Goal: Significant SSO reduction in short timeframe

Cost Management Goal: Minimize short-term and long-term rate impacts

Failure Analysis Usually Indicates Most SSOs Manageable Using Maintenance Strategy

- Objective
 - $_{\circ}$ Cost effective SSO Reduction
- Cause / Mitigation
 - $_{\circ}$ Blockage / Cleaning
- Tactic
 - Schedule Optimization
 - Risk/GIS Scheduling
 - Schedule Synchronization

Risk Based Maintenance Optimization Schedule Optimization

Tactic 1: Schedule Optimization

Each pipe has an optimum cleaning frequency

$\langle \ $	Too Little	Just Right	Too Much
·	Risk of overflow	 Efficient use of resources Limit risk of overflow Extend useful life 	Inefficient Resource UseIncrease wear

N

Decision Types

Large Agency Case Study: Data-Driven Strategies to Improve Operations

Sewer Cleaning Frequency Optimization – Continuous Improvement

- Data Utilized:
 - $_{\odot}~$ Cleaning findings and severity
 - $_{\circ}~$ CCTV O&M defects and severity
- Decision Support
 - $_{\odot}~$ Proposes frequency changes
 - Schedule accelerations
- Software Integrations
 - Hansen CMMS (history, frequencies, generating schedules), & exempt assets
 - $_{\circ}$ GIS (packaging)
 - \circ CCTV

Large Agency Case Study: Data-Driven Strategies to Improve Operations

Sewer Cleaning Frequency Optimization – Continuous Improvement

- Data Utilized:
 - $_{\circ}~$ Cleaning findings and severity
 - $_{\circ}~$ CCTV O&M defects and severity
- Decision Support
 - $_{\odot}~$ Proposes frequency changes
 - Schedule accelerations
- Software Integrations
 - Hansen CMMS (history, frequencies, generating schedules), & exempt assets
 - GIS (packaging)
 - \circ CCTV

Large Agency Case Study: Data-Driven Strategies to Improve Operations

Sewer Cleaning Frequency Optimization – Continuous Improvement

- Data Utilized:
 - $_{\circ}~$ Cleaning findings and severity
 - $_{\circ}~$ CCTV O&M defects and severity
- Decision Support
 - $_{\odot}~$ Proposes frequency changes
 - Schedule accelerations
- Software Integrations
 - Hansen CMMS (history, frequencies, generating schedules), & exempt assets
 - GIS (packaging)
 - \circ CCTV

The **RIGHT** work, at the **RIGHT** time, at the **RIGHT** cost.

Risk Based Maintenance Optimization Risk/GIS Based Scheduling

Acceptable Maintenance Window Philosophy

Assumption: An asset should not have a Maintenance-related SSO if maintained within it's acceptable maintenance window"

Results of Maintenance Window Philosophy

Benefit: Less Drive Time between work orders Problem: What work should I do first?

Risk in Maintenance

 Theory: Risk of SSO increases once you pass the end of the acceptable maintenance window

Risk & Acceptable Maintenance Window

As-Is

Benefit: Allows Maintenance Planner to quickly and effectively balance risk and geographic location when assigning work

Schedule Synchronization

No Zone

225 t

Zone

Benefit: Minimizes trips to a zone

Results at Several Large Agencies (~18,000 mi)

Renewal Optimization

Calibration: Balancing Risk Tolerances & Cost of Service

Risk Assessment

- Likelihood of failure

- Defect count/type/size (e.g. hole)
- Count of critical defects
- Capacity issues
- Presence of groundwater
- o Material
- $_{\circ}$ Cleaning frequency
- History of grease and debris

- Consequence of failure

- $_{\circ}$ $\,$ Backup / SSO History $\,$
- o Diameter
- Proximity to water body
- $_{\circ}$ Roadway type
- Near railroad
- $_{\circ}$ Within downtown corridor
- $_{\circ}$ $\,$ Within slide area $\,$
- Proximity to critical infrastructure (e.g. school)
- Location (main, connection, lateral)

100

75

50

25

0

Defined Decision Guidelines Create Consistency and Opportunity for Support Tools

Defined Decision Guidelines Create Consistency and Opportunity for Support Tools

Large Agency Case Study: Asset Condition Assessment & Remediation Planning

Implement Condition Analytics Tools to Support Remediation Decision-Making

Implement Condition Analytics Tools to Support Remediation Decision-Making

Leverage GIS for Effective Decision-Making at Project Level

Seattle Public Utilities Example

Old Approach: True run to failure (Only reactive ER repairs)

New Approach:

Proactive Risk Management

- ✓ Better understanding of systematic needs
- Prudent decision making: consistent, transparent, defensible
- ✓ Sustainable renewal rate (tripled CIP budget)

Johnson County Wastewater Results:

- ✓ Increased Confidence in System-wide Renewal Forecast
 - Old Age based: \$40M per year
 - New Risk based: \$5M per year
- ✓ Tools Implemented to Support more Efficient & Effective Decisions
- ✓ Better Understanding of the Type and Quantity of Future Work

Lessons Learned from Large Agency SSO Reduction Programs

Thank you!

For Additional Information, Contact:

Michael Flores, HDR Practice Lead for Collection System Operations 714-785-9421