

POTW x Hydrogen Nexus How do we Power the Utilities of the Future? Clean Water SoCal

Agenda

- 1. Introduction
 - H₂ 101
 - Why H₂
- 2. Current H₂ trends
 - Market update
 - California focus
- 3. $H_2 \times WRRF$
 - Water → H₂
 - Biogas \rightarrow H₂
 - Biosolids → H₂
 - Ammonia \rightarrow H₂
 - H₂ storage & microgrids
 - Air emissions

Introduction

→ H₂ 101 Why H₂

Hydrogen 101

First element of opportunity

- Most common element in the universe
- Always bonded to other elements such as oxygen and carbon* → Must be produced
- Energy carrier, not an energy source
- Versatile applications

Energy content:

- Highest energy content by mass. Ex: 3x gasoline
- Low energy content by volume. Ex: 1/4 gasoline, 1/3 natural gas

Safety considerations:

- Used in the industry for decades (refineries, fertilizer, rocket fuel)
- H₂ is hard to detect: colorless and odorless, H₂ flames nearly invisible in daylight
- Wide flammability range and low ignition energy \rightarrow H₂ venting is key || H₂ disperses 3x as fast as natural gas
- Small molecule → metal embrittlement

The Present

- World 100 Mt H₂/yr | US 10Mt H₂/yr
- 99% of H₂ from natural gas, coal & other HC
- World H₂ production emits 980 MtCO₂/yr
- 90% of H₂ used for HC refining & fertilizer production

The Future

- Transition to **low-emissions** H₂ in current industries
- Adoption of H₂ in **new sectors**: transport, heavy industry, energy storage & grid balancing
- Improvement in cost-competitiveness
- **Export** market for geographies with excess energy

Hydrogen Production Pathways

GEOLOGIC HYDROGEN

Naturally occurring geologic hydrogen

white H₂

Bio-based subsurface conversion

gold

FOSSIL RESOURCES

Natural Gas:

- SMR (2/3 of current H2 production alobally)
- SMR or ATR blue with CCUS
- eSMR / microwave reforming

 H_2

gray

teal

- Methane turquoise pyrolysis

Coal:

- Gasification black (bituminous / brown lignite) (20% of current H2 production globally)
 - Gasification with CCUS

H_2

blue

BIOMASS / WASTE

Via AD & biogas

- Reforming
- **Pvrolvsis**

Thermal treatment

- **Pyrolysis**
- Gasification

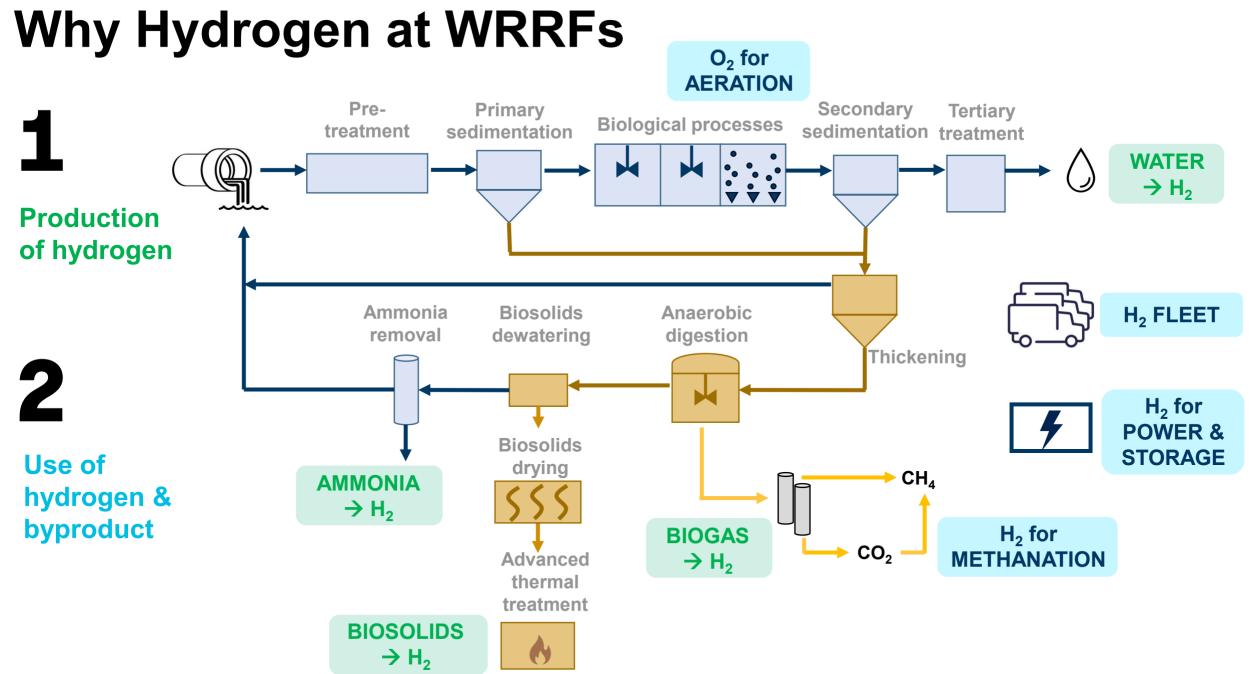
Biological

- Fermentation (dark or light)
- Microbial electrolysis

dark areen

WATER SPI ITTING

- Water electrolysis powered by:
 - H_2 green Renewables
 - H₂ pink Nuclear
 - H_2 vellow Electric arid


Electrolysis types:

- Low-temperature (Alkaline, PEM, AEM)
- High-temperature (SOEC)
- Other long-term water splitting pathways:
 - **Thermochemical**
 - **Photobiological**
 - **Photoelectrochemical**

OTHER FEEDSTOCKS

- **Ammonia**
 - Reforming
 - Electrolysis
- (Bio-)Methanol
 - Reforming

Current Hydrogen Trends

→ Market Updates
California Focus

Global Low-Emissions Hydrogen Market

RECENT NEGATIVE NEWS

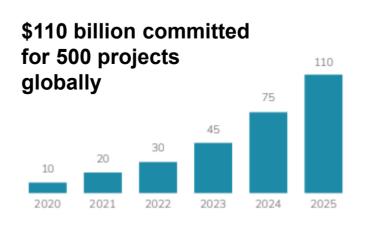
- CA & PNW H2 Hub funding canceled
- 50+ projects publicly canceled recently

US Department of Energy to Cancel All Hydrogen Hub Grants, Leaked Documents Reveal

Fortescue axes two green hydrogen projects after Trump administration's shift on renewables

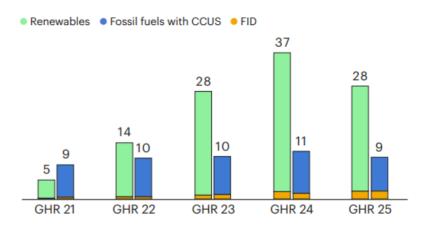
Woodside Energy scraps US green hydrogen project

By Edward Laity on Jul 23, 2025

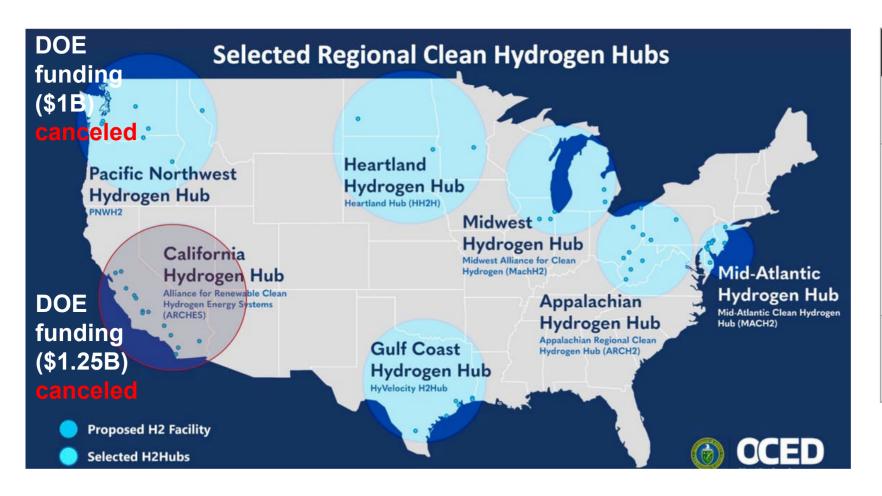



IEA cuts 2030 low-emissions hydrogen production outlook by nearly a quarter

Ry Poutors


September 12, 2025 9:40 AM PDT - Updated September 12, 2025

BUT


Low-emissions H₂ production from announced projects by 2030 (Mt/yr)

2030 forecast reduced by 24% but still 37 Mt/yr of low emissions H₂

U.S. Policies and Funding Updates

IIJA Hydrogen Hubs Status

IRA Tax Credits

IRS Code	Description	OBBBA Update
45V	Clean Hydrogen PTC (up to 3 \$/kg)	Need to start construction by 12/31/27
45Y & 48E	Clean Electricity PTC and ITC	Wind + Solar: begin construction by 7/4/26 or placed in service by 12/31/27
		Other technologies: pre-OBBBA deadlines and phase-out apply
45Q	CCUS Tax Credit	$$85/\text{ton CO}_2$ for sequestration, use or EOR ($180 for DAC)$

Hydrogen's Key Role for California Net Zero

2022 CARB Scoping Plan for Achieving Carbon Neutrality

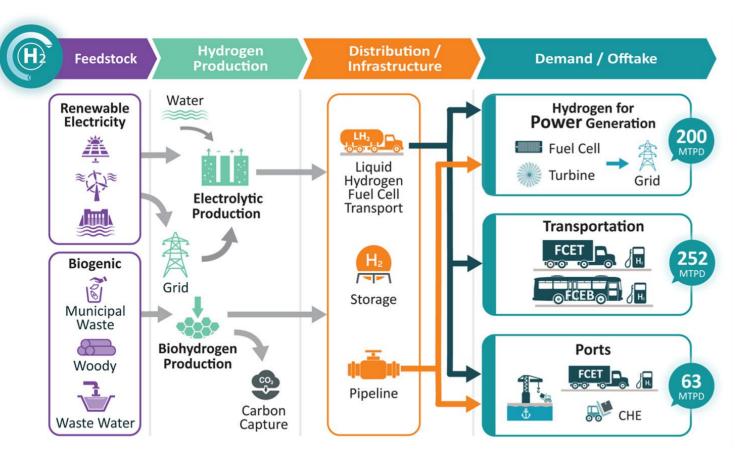
Production

End uses

CARB SB 1075 comprehensive report on hydrogen due soon

- 100% light-duty vehicle sales are ZEV by 2035
- 100% medium and heavy-duty vehicles sales are ZEV by 2040
- 20% of **aviation** fuel demand is met by electricity (batteries) or hydrogen (fuel cells) in 2045.
- 25% of ocean-going **vessels** utilize hydrogen fuel cell electric technology by 2045.
- **Port operations**: 100% of CHE is zero-emission by 2037. 100% of drayage trucks are zero emission by 2035.
- Line haul and passenger rail rely primarily on hydrogen fuel cell technology.
- Chemicals / Pulp & paper: Hydrogen for 25% of process heat by 2035 and 100% by 2045
- Renewable hydrogen **blended** in fossil gas pipeline at 7% energy (~20% by volume)

- 19,000 fuel cell cars
- 51 retail H₂ stations
- 66 fuel cell buses (AC Transit, OCTA, SunLine)
- 4 truck H₂ stations


Includes Hydrogen pathways

California Remains Committed to Hydrogen

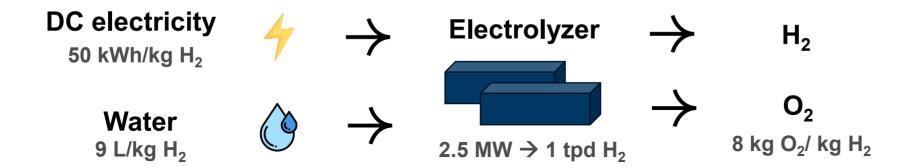
\$11B+ in State and Private Investment

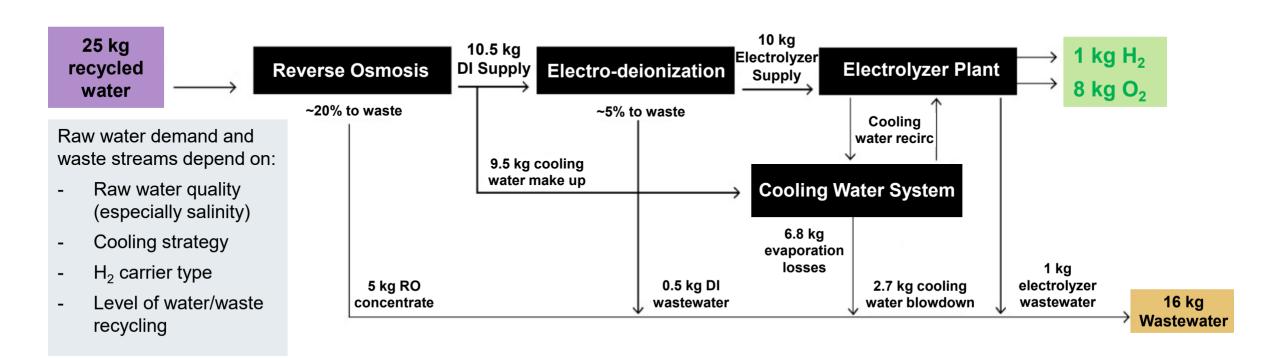
- Production: 9 facilities
- **Power**: 2 plants with H₂ capable turbines
- > Transportation:
 - 1,000 fuel cell electric buses
 - 5,000 fuel cell trucks
 - 40+ hydrogen refueling stations
- 3 port infrastructure upgrades
 - 190 CHE
 - 10 mobile refuelers
 - 800 fuel cell trucks
- New hydrogen pipelines

Hydrogen x WRRFs Opportunities

→ Water to Hydrogen

Biosolids to Hydrogen

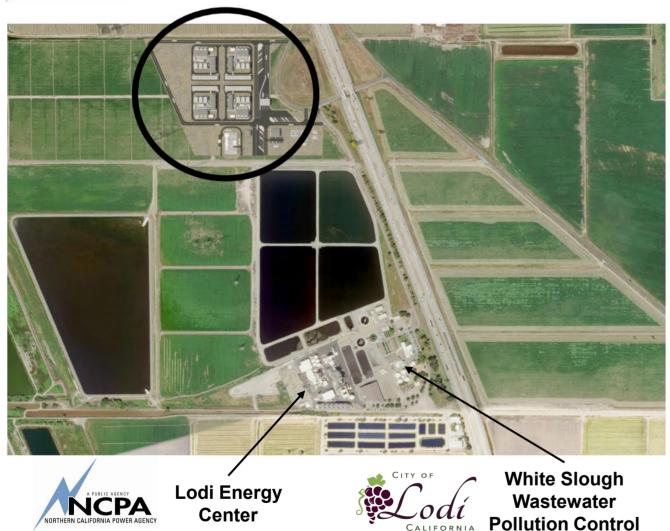

Biogas to Hydrogen

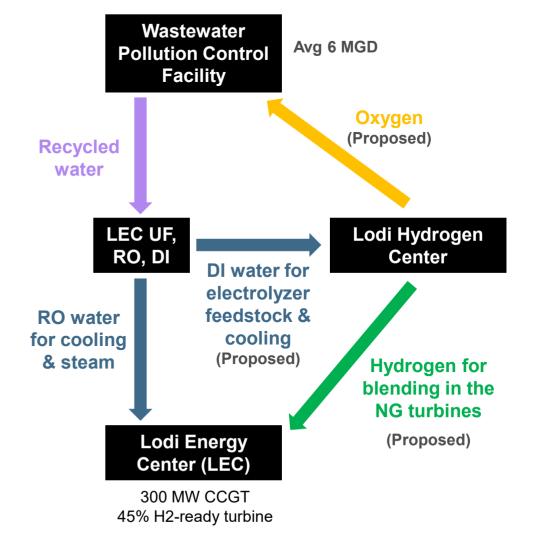

Ammonia to Hydrogen

Hydrogen Storage

Hydrogen Microgrid

Water Electrolysis




Co-locating H2 with Recycled Water

Facility

Lodi Hydrogen Center

Biosolids Gasification

Various biosolids advanced thermal treatment projects, focused on volume reduction and PFAS destruction.

Can be energy neutral.

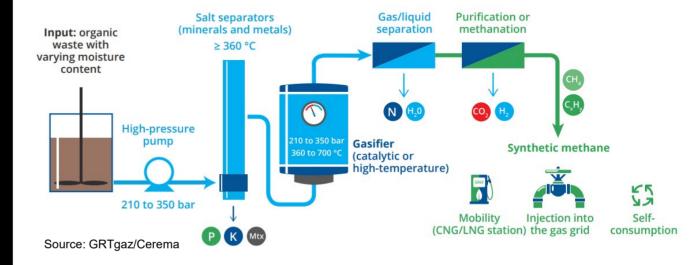
Example of operational projects:

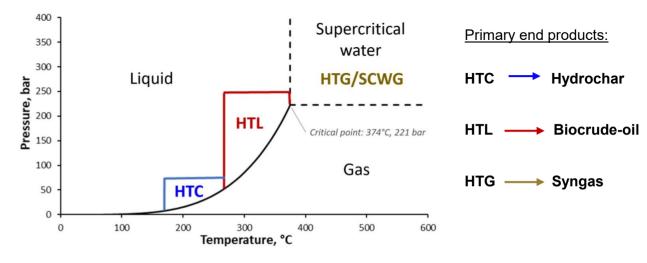
Aries Linden Biosolids Gasification Facility, NJ

Logan Water Biosolids
Gasification Facility, Australia

Bioforcetech Silicon Valley Clean Water Pyrolysis Facility, CA

Ephrata Biodrying & Pyrolysis, PA


Ecoremedy gasification at Edmonds WWTP, PA



Syngas in TOX with heat recovery for biosolids drying

New advanced thermal treatment technologies net energy positive

Hydrothermal gasification (high T, high P) for wet organic waste (no need for drying) produces syngas (CH₄, H₂, CO₂)

Biogas Reforming or Pyrolysis to Hydrogen

WWTP Biogas to Hydrogen and Graphite

- Woodman point WWTP in Western Australia (about 43 MGD)
- Commercial demo project: 100 tons H₂ per year and 340 tons of graphite per year
- Pyrolysis with iron ore catalyst

Dairy Biogas to Renewable Fuels

- Biogas reforming in HYCO1 CUBE Technology
- Production of renewable diesel and SAF
- HYCO1 new non-coking catalyst

Dairy Biogas to Hydrogen

- CO₂/CH₄ separation
- CH₄ reforming
- H₂ used for IC and FCEV

Other projects:

- HyGear 250 kW e-SMR producing 400 kg H₂/d from biogas in Germany
- Tecnidas Reunidas operational prototype in Spain (50 kg/d)
- Utility Global (H2Gen) and Maas Energy announced project for dairy digester biogas to hydrogen in California

Ammonia Recovery and Use

Ammonia recovery

- Recover ammonia instead of typical biological treatment converting to inert N₂ gas
- Stripping: Produce a concentrated ammonium sulfate solution
- Other physicochemical treatment: lon exchange, Membrane

Metro Vancouver case study at Lulu Island and Annacis WWTPs

Ammonia to hydrogen

Thermal cracking

 High temperature process with catalyst

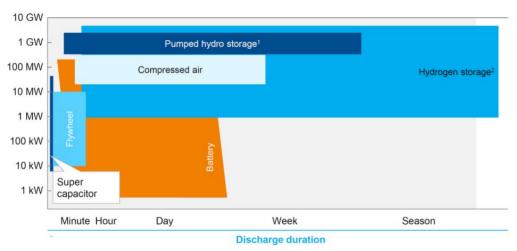
 Will enable long distance transport of hydrogen OR

Electrolysis

Ammonia to power

Containerized ammonia cracking to fuel cell or internal combustion engine

Fuel-agnostic linear generators


Ammonia to other products

Fertilizer, etc

Hydrogen Storage

Advantages

- Long-term energy storage
- High energy content by mass

Source: Hydrogen Europe, 2019

Challenges

- Costs
- Low energy content by volume (compared to gasoline, NG)

Hydrogen storage technologies

Hydrogen can be stored in various forms:

PHYSICAL STORAGE

Compressed H2

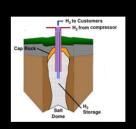
- **Aboveground** pressurized vessels
- **Subsurface** compressed H₂ storage

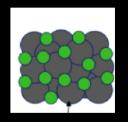
Liquid H2

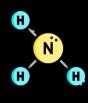
- Cryogenic liquid H₂ storage vessels

MATERIAL-BASED STORAGE

Solid-state storage


- Metal **hvdrides** (absorption)
- Carbonbased materials (adsorption)


Chemical carriers


- **Ammonia** (NH₃)
- Methanol (CH₃OH)
- Liquid Organic Hydrogen **Carriers** (LOHC)

Backup Power and Microgrids

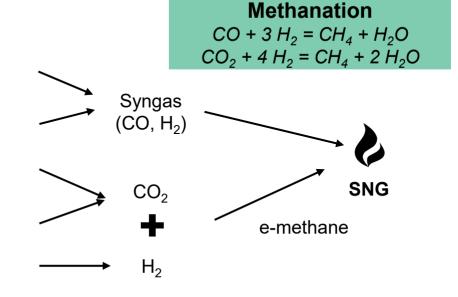
Calistoga Resiliency Center

Batteries + H₂ Fuel Cells Microgrid

- ENERGY VAULT®
 Enabling a Renewable World
- Pacific Gas and Electric Company®

- 5,000-person community
- Replaced diesel generators (PSPS events)
- 8.5 MW / 293-MWh, 48-hrs
 - Li-ion **battery** for immediate power & black start (7.7 MW / 11.6 MWh)
 - 6 x H₂ **fuel cells** for extended periods
 - Liquid H₂ storage (80,000 gal, 234-ft long tank)
 Can be refilled while in use
- Small footprint compared to BESS only (<1 acre)

Synthetic Natural Gas (SNG)


Various sources of syngas (CO, H₂) or CO₂ and H₂

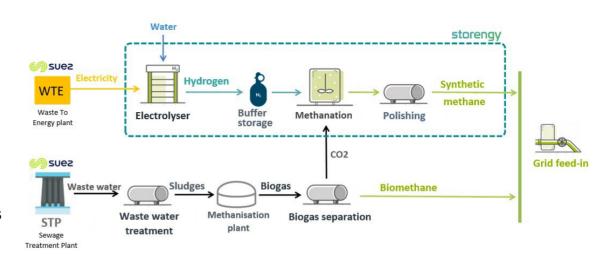
Gasification & methanation of syngas (CO, H₂)

Coal Thermal Gasification or Biomass or Some industrial waste gas

Methanation of CO₂ and H₂

Waste CO_2 from biogas or Captured CO_2 from point sources (CCUS) or air (DAC) Various H_2 production pathways

Denmark



- Digester (~75 farms) → Biogas
- Wind → Green H₂
- CO₂ from biogas is reacted with H₂ to produce CH₄
- Increase methane production by ~50%

France

- Pau-Lescar WWTP "Biofactory"
- Catalytic methanation to convert CO₂ from biogas and H₂ into SNG

Air Emissions from Combustion of H₂ Fuels

In general, when compared to NG and other HC fuels, H₂ combustion:

- Decreases CO₂ emissions
- Decreases CH₄ emissions
- Decreases emissions of other CACs
 since H₂ do not directly contribute to CO, PM, SOx, etc.
- Potentially increases NOx emissions

When blending in industrial equipment (e.g., boilers):

- NOx emissions generally expected to increase
- Key mechanism: thermal NOx formation
- < 30% H₂ generally ok.
- > 30% H₂ material impact and requires additional control measures.

NOx controls exist and are well-established, off-the-shelf solutions:

(1) Control NOx formation

Control combustion temperatures and avoiding hot spots to mitigate **thermal NOx** formation in the combustion zone

- Ultra low-NOx burners (BACT), dry low-NOx, etc
- Adaptive fuel controls to control fuel flow
- Flue gas recirculation (FGR)
- Water/steam injection

(2) Post-combustion controls

Remove NOx from flue gas streams

- Selective Catalytic Reduction (SCR)
- Selective non-catalytic reduction (SNCR)
- Scrubbers

Combination of techniques (e.g., low-NOx burner + SCR) can achieve 2-3ppm NOx

Key Messages

- Low-carbon hydrogen market is growing despite roadblocks (slower trajectory).
- 2 California remains committed to low-carbon hydrogen.

H2 x WRRF Opportunities

- Various technologies to leverage WRRF resources to:
 - ✓ Produce low-emission hydrogen or other products (e.g., methanol, SAF)
 - ✓ Use hydrogen (e.g., energy storage) or other by-product (oxygen)
- Opportunities depend on specific use case / location: resources available, potential partners, nearby offtakers, etc

*Thank you

Kim Domptail, kim.domptail@ghd.com, 949-230-1062

