CASA CWEA PARTNERING FOR IMPACT

WE CAN MAKE AN IMPACT

WELCOME TO BERKELEY June 3, 2025

Thank you to our sponsors

CASA CWEA PARTNERING FOR IMPACT

WE CAN MAKE AN IMPACT

WELCOME TO BERKELEY June 3, 2025

Innovation in Wastewater Policy

Felicia Marcus William C. Landreth Visiting Fellow Water in the West Stanford University

Reverse Osmosis Concentrate Management

ANGELA STEIGLER, MODERATOR Hazen

Reverse Osmosis (RO) is the leading technology for potable reuse of municipal wastewater

Municipal Wastewater RO Concentrate Management Perspectives

Water Supply

- RO maximizes possible uses for alternative water supplies
- Incentive to maximize recoveries
- RO permeate represents a PFAS-free water supply

Wastewater Treatment

- Loads remain the same, concentrations are 5-6x higher
- Opportunity to manage contaminants in a smaller flow/volume
- Few MWRC treatability studies
- Pressure from emerging regulations

Partnering for Impact on MWROC Management

 MWROC management requires collaboration and partnership

- Opportunities for research and innovation to:
 - Reduce costs
 - Maximize benefits
 - Meet regulatory goals

Modified from Finnerty et al. 2023

Our Panelists

Manisha Kothari

David Sedlak

Alternative Water Supply Program Manager SFPUC Professor of Civil & Environmental Engineering; Director of the Berkeley Water Center UC Berkeley

PARTNERING FOR IMPACT

Mark Donovan

North American Water Treatment and Desalination Lead GHD

Nutrient Removal – Energy Emissions Nexus

SARAH DESLAURIERS, MODERATOR CASA

Nutrients in Wastewater

Wastewater Treatment Removes Nutrients to Protect Receiving Waters

- Treatment needs vary from plant to plant
- Treatment operations can be energy-intensive
- Treatment may require chemical addition (chemical production can be energy-intensive)
- Integrating new technology must look at up- and down-stream impacts
- Increased intensity of treatment or changes to operations to enhance nutrient removal can lead to increased emissions
- Must look at the big picture to understand net impact

Optimize Nutrient Removal, Energy, & Emissions!

- Nutrient removal is a top priority for the State and Regional Water Boards
- Carbon neutrality is a top priority for the Air Resources Board
- National research has been underway for decades on each topic
- California and Denmark have a partnership to share information on the water-energy-emissions nexus work at Aarhus Vand (and others)
- CASA Research Collaborative is working to bring partners together in CA

Our Panelists

Dr. Mike Falk

Approaches to Nutrient Removal HDR

Dr. Krishna Pagilla

Nitrogen Removal Treatment – Energy & Nitrous Oxide Emissions, University of Nevada - Reno

Christophe Boisvert

Monitoring Nitrogen Removal for Performance Optimization at Aarhus Vand (Denmark) & Utilizing Data through Digital Twin Modeling,

- IMPAIRMENT OF AESTHETICS, RECREATION, AQUATIC LIFE, AND WATER SUPPLY
- STRATEGIC TO "SQUEEZE THE PIPES" MORE EFFECTIVELY

Drivers Specific to California

- Algae Blooms (Freshwater and Brackish)
 - Bay Area: 2022/2023
 - SoCal Bight
 - Freshwater
- Ocean Acidification (related to Algae)
- Depressed Dissolved Oxygen Levels
- Public Health: Blue-Baby Syndrome
- Freshwater Mussels
- Others

With the historic drought, I imagine toxic algae might occur anywhere. I don't think these hikers ever swam in the water (I may be wrong). I think the implication is that just hiking near a stream can instantly kill you and your family? Has this happened before in California?

Nutrients from human waste boost ocean acidification & hypoxia in CA—wastewater treatment agencies say regulation is premature, environmentalists say it's overdue & researchers say it's "fair to ask hard questions" about the science.

On-Going and Future Treatment Themes

<u>Treatment and Process</u> <u>(How to "Squeeze" More Out of the Pipes):</u>

- Optimization
- Sidestream Treatment
- Upgrades
- Process Intensification
- Resource Recovery
- <u>Supply/Reuse</u>: Potable Reuse (refer to Reverse Osmosis Conc Challenges Discussion)
- **By Other Means:** Reuse, Nature-based Solutions, etc.
- Non-Point Source Loads: Agriculture, Stormwater, etc.

Blueprint for Regional Approaches : Holistic Approach to Improved Nutrient Management: Phase 1 WRF #4974

Figure 1. US Watersheds and Strategic Locations of Partner Utilities and Workshop Locations

Holistic Approach to Improved Nutrient Management | The Water Research Foundation (waterrf.org)

Holistic Pollution Management: Practices, Policies, and Partnerships (3 P's)

Key Factors Influencing Holistic Nutrient Mgmt

- Practices
 - Treatment
 - Best Management Practices
- Policies
 - Regulatory Frameworks
 - Watershed Governance
- Partnerships
 - Collaboration
 - Leadership

Regional Approaches: Balance the 3 P's to Incentivize Cost-Effective and Beneficial Regional Solutions

BACWA (wastewater utilities)

San Francisco Estuarine Institute (science) SAN FRANCISCO

Non-Govt Organizations (NGOs)

Nitrous Oxide Emissions from WRFs during N Removal

Krishna Pagilla, PhD, PE, BCEE Ralph & Rose Hoeper Endowed Professor Director, Nevada Water Innovation Institute

Nitrous Oxide (N₂O) Emissions and Aeration Energy in N Removal

- N_2O is emitted from:
 - Biological N Removal Process
 - Secondary Treatment
 - Discharged Effluent

- Overall WRF Carbon Footprint
 - >50% Energy for Aeration (Scope 2)
 - Nitrification Doubles Aeration Demand
 - Sidestream Treatment Increases Energy Demand

Possible Nitrous Oxide (N₂O) Pathways

N₂O Emissions from Activated Sludge

(Ahn et al., 2010. EST; Ahn et al., 2010, WER; Rassamee et al., 2011, B&B)

National Study Funded by Water Environment Research Foundation (WERF U4R07; 2008-2009)

- More N₂O emissions observed from aerobic vs anoxic conditions
- High variability across WRFs and diurnally within each WRF
- Single emission factor for all WRFs is not appropriate
- High Nitrite, Ammonium, and DO concentrations were positively correlated to N₂O Emissions; other factors may play an indirect role
- BNR processes that minimize transient conditions and achieve complete N removal (low TN effluents) are likely to have lower N₂O emissions
- More facility-level research needed

Table I: Summary of N₂O fluxes and emission factors measured at full-scale WWTPs

Plant Configuration	Temp(°C)	Q % influent TKN (MGD) emitted as N ₂ O		% TN removed emitted as N ₂ O	Emission factor (g N2O/PE/yr)	
Separate-stage BNR	15 ± 0.48	23	0.03 ± 0.00	0.03 ± 0.01	1.2 ± 0.18	
	23 ± 0.28	27	0.01 ± 0.00	0.01 ± 0.00	0.28 ± 0.13	
Four-stage Bardenpho	14 ± 0.26	7.8	0.16 ± 0.10	0.19 ± 0.12	9.8 ± 6.1	
	23 ± 0.20	8.1	0.60 ± 0.29	0.66 ± 0.32	33 ± 16	
Step-feed BNR 1	19 ± 0.22	29	1.6 ± 0.83	2.9 ± 1.5	92 ± 47	
	25 ± 0.28	30	0.62 ± 0.27	0.90 ± 0.39	33 ± 14	
Step-feed non-BNR	17 ± 0.12	71	0.18 ± 0.18	0.37 ± 0.36	13 ± 13	
	26 ± 0.81	93	1.8 ± 0.79	3.3 ± 1.5	97 ± 43	
Separate centrate*	30 ± 2.3	2.0	0.24 ± 0.02	0.63 ± 0.06	*	
	34 ± 0.32	1.6	0.54 ± 0.16	0.96 ± 0.32	*	
Plug flow 1	11 ± 0.20	18	0.40 ± 0.14	0.92 ± 0.32	23 ± 7.9	
Tiug-now T	23 ± 0.46	15	0.41 ± 0.14	0.70 ± 0.24	28 ± 9.6	
Plug_flow 2	11 ± 0.41	8.7	0.62 ± 0.15	1.7 ± 0.41	26 ± 6.4	
1 lug-110 w 2	22 ± 0.58	6.6	0.09 ± 0.03	0.22 ± 0.06	5.0 ± 1.4	
MLE 1	26 ± 1.8	4.0	0.07 ± 0.04	0.09 ± 0.05	6.8 ± 3.5	
MLE 2	26 ± 0.17	4.1	0.06 ± 0.02	0.07 ± 0.03	5.4 ± 2.0	
Step-feed BNR 2	29 ± 0.18	14	1.5 ± 0.02	1.7 ± 0.02	140 ± 1.2	
Oxidation ditch	19 ± 0.58	3.4	0.03 ± 0.01	0.03 ± 0.01	1.8 ± 0.77	
Step-feed BNR 3	24 ± 0.78	57	0.05 ± 0.03	0.06 ± 0.03	4.1 ± 2.2	

Key Findings from Recent Work* (2024)

The results reveal the diverse nature of wastewater N_2O emissions and underscore the need for a customized approach to inform facility-level N_2O emission estimation as well as inform national- and sector-wide GHG inventories with emphasis on site-specific considerations.

*Oversimplification and Mis-estimation of Nitrous Oxide Emissions from Wastewater Treatment Plants, 2024 – Cuihong Song, Jun-Jie Zhu, John Willis, Daniel Moore, Mark Zondlo, **Zhiyong Jason Ren**, Nature Sustainability

Key Insights

- BNR at WRFs emit N₂O at various levels Variability is common!
- Need facility-level approach for accurate estimation and N-removal process selection
- Many process factors (temperature, DO, pH, ammonium levels, C/N Ratio, aeration rate/type, and transient conditions) are responsible – <u>DO and Transient Conditions</u> are dominant factors for N₂O emissions
- Low TN plants have lower risk of N₂O emissions
- Understanding N₂O emissions at a facility is directly related to understanding the BNR operations and performance
- N₂O emissions in WRFs may constitute majority of total direct (Scope 1) GHG emissions if not optimized

PARTNERING FOR IMPACT

Pathways to Water Sector Decarbonization, Carbon Capture and Utilization

Edited by Zhiyong Jason Ren and Krishna Pagilla

Predicting And Mitigating N₂O Emissions In WWTPs Can Digital Twins Help Achieve Carbon Neutrality?

Christophe Boisvert, DHI Carles Pellicer-Nàcher, F. Polesel, M. Rebsdorf, A. Lynggaard-Jensen, E. Brodersen, M. Guldborg Hansen, P. Andreasen, T. Dalkvist

Digital twins: why?

Benefits in the context of N₂O mitigation:

- Analyse and contextualize complex N₂O process data
- Soft sensoring to decipher N₂O production mechanisms
- From data to action mitigation of N_2O emissions

Source: https://www.controleng.com/articles/digital-twin-improves-plant-design-and-operational-performance/

Source: https://albertawater.com/influences/wastewater-treatment-plants/

Process Efficiency (EQI) [-] Effluent quality/compliance, removal efficiency Energy Efficiency [kWh/m3] Average energy consumption for selected period Cost Efficiency [DKK/m3] Average operational costs for selected period Resource Efficiency - chemical dosing (kg) per TP (kg) removed [kg/kg] Chemical dosing, resource recovery (e.g. biogas) 0.0 0.2 04 Carbon Footprint [kg CO2eg/m3] GHG generation from process, electricity, chemicals 1.0 1.5 2.0 0.0 0.5

Source: https://www.forecastr.co/blog/time-seriesforecasting-model

Calibration - (Marselisborg, batch mode pilot plant)

Validation – full scale WWTP (Bjergmarken)

•

•

•

٠

alternating N/DN

Controllers Aeration: Alternating inlet/outlet and N/DN • Ammonia-based DO set-point **RAS** recirculation ٠ Sludge wastage Sensors in PTs • NH₄⁺, NO₃⁻ N₂O liquid phase ٠ DO • TP/PO₄⁻ • MLSS Inputs to the model • Flow Temperature Influent fractionation from historical lab data RAS flows 3-digits phase codes for

Modelled vs. Measured N2O Concentrations

Scenario Analysis (offline WEST modeling)

TSS (g/L)

NH4 SETPOINTS HUBGRADE CONTROLLER				OUTPUTS					
0,5	2	4	6	CO ₂ eq released (kg/d)	Cost (€/m3)	COD (mg/L)	NH 4 (mg-N/L)	TN (mg-N/L)	TP (mg-P/L)
DOsp_0	DOsp_1	DOsp_2	DOsp_3						
0,2	0,2	1,0	1,0	16312,4	0,4	26,8	1,4	4,1	1,0
0,2	1,0	1,0	1,0	17444,0	0,4	26,8	1,2	4,7	1,0
1,0	1,0	1,0	1,0	17556,2	0,5	26,7	0,7	6,3	1,1
0,2	0,2	1,0	2,5	16791,6	0,4	26,8	1,3	4,1	1,0
0,2	1,0	1,0	2,5	16616,0	0,4	26,8	1,0	4,7	1,0
0,2	0,2	2,5	2,5	17029,3	0,4	26,8	1,1	4,1	1,0
0,2	1,0	2,5	2,5	18175,1	0,4	26,8	0,7	4,9	1,1
1,0	1,0	2,5	2,5	18329,2	0,5	26,7	0,5	6,5	1,2

Pairing of measured data with N₂O (liquid phase)

Call to Action Felicia Marcus William C. Landreth Visiting Fellow Water in the West Stanford University

Thank you to our sponsors

THANK YOU

Attendee Happy Hour Meet-up

DAVID BROWER CENTER Terrace 2181 Shattuck Ave Berkeley

