Identification Sewer Exfiltration to Storm Drain Systems

DUDEK

October 1,2018

Outline

- Exfiltration Evaluation
- Regulatory Framework Connections
- Next Steps

Sewer/MS4 Exfiltration/Infiltration

Identify- Potential areas:

- Underground
- Numerous variables
- Extensive geographic area
- Quantify- Estimate:
 - Flows
 - Transfer through soil/media
 - Pipe defect(s)
 - Soil microbial action?

Synthesize

- RWQCB requirements
- Operations

(Sercu et al. 2011, ES&T)

Phased Pilot Approach

Phase I – "Desktop" Study

- GIS data
- Record drawings
- CCTV)
- Phase II Field Investigation (CCTV Storm Drains)
- Phase III Field Testing (dye, soil, sampling)
- Phase IV Pipe Rehab

Sewer Collection System

Sewer and Storm Drain System

- 3,200 acres
 (5 sq.mi)
- Channels
- MS4 pipes

Sewer/Storm Drain Crossings

DUDEK

Desktop Investigation

- Contributing Factors
 - Pipe Crossings
 - Vertical Separation
 - Sewer Pipe Condition
 - Storm Drain Mat'l/Size
 - Soil Type

Scoring Matrix

5 Categories, 12 sub categories

- Spatial relationship (horizontal/vert distance)
- Sewer pipe flow
- Sewer pipe material and age
- Sewer condition scores (CCTV)
- Soil type
- Storm drain pipe material and age
- Groundwater level
- Weighted scoring

	Storm Drain Pipe Priority Rating										
Value	SD size	Mat'l	Age	Average	Weight	Score					
1	<12"	HDPE	< 15 yrs								
2	15" to 24"	PVC, RCP, etc	15 to 40 yrs								
3	30" to 48"	CMP	> 40 yrs								
4	54" to 96"	Perf, Natr'l									
5	> 96"										
Score	2	5	2	3.0	1.0	3.0					
		S	oil Priority Rati	ng							
N/ 1											
value	Soil Permeabilit	y (in/hr)		Average	Weight	Score					
value 1	Soil Permeabilit <.63	y (in/hr)		Average	Weight	Score					
Value 1 2	Soil Permeabilit <.63 .63 to 2	y (in/hr)		Average	Weight	Score					
Value 1 2 3	Soil Permeabilit <.63 .63 to 2 2 to 6.3	y (in/hr)		Average	Weight	Score					
Value 1 2 3 4	Soil Permeabilit <.63 .63 to 2 2 to 6.3 6.3 to 20	y (in/hr)		Average	Weight	Score					
Value 1 2 3 4 5	Soil Permeabilit <.63 .63 to 2 2 to 6.3 6.3 to 20 > 20	y (in/hr)		Average	Weight	Score					
Value 1 2 3 4 5 Score	Soil Permeabilit <.63 .63 to 2 2 to 6.3 6.3 to 20 > 20	y (in/hr)	1	Average	Weight 2.0	Score 2.0					
Value 1 2 3 4 5 Score	Soil Permeabilit <.63 .63 to 2 2 to 6.3 6.3 to 20 > 20	γ (in/hr)	1	Average	Weight 2.0	Score					

Priority Ratings

Scoring matrix-based

- 19 of 507 (4%) sewer pipes above storm drain
- 12 of 19 (2%) also cross storm drain
- 6 of 12 (1%) also have defect
- 2 of 6 (0.3%) also in sandy soil → <u>highest rating</u>
- Unaccounted variables/factors

	Spatial Relationship Ground Water						Sewer Pipe Priority Rating				Storm Drain Pipe Priority Rating					Soil Priority Rating			FINAL	Damle				
Site ID	Vert. Dist.	Horz. Dist	Avg	Total	In Valley?	Swr Depth	Vert. Dist.	Avg	Total	Flow Depth	Defect	EMA	Avg	Total	SD Mat'l	Size	Age	Avg	Total	Perm. (in/hr)	Avg	Total	SCORE	капк
116	5	1	3.0	9.0	3	3	5	3.7	3.7	1	0	0	0.3	1.7	2	3	2	2.3	2.3	3	3.0	6.0	22.7	8
176	5	3	4.0	12.0	3	2	5	3.3	3.3	2	2	0	1.3	6.7	2	5	2	3.0	3.0	1	1.0	2.0	27.0	3
223	5	3	4.0	12.0	3	1	5	3.0	3.0	1	0	0	0.3	1.7	2	5	2	3.0	3.0	1	1.0	2.0	21.7	10
225	5	2	3.5	10.5	3	2	5	3.3	3.3	2	0	0	0.7	3.3	2	5	2	3.0	3.0	1	1.0	2.0	22.2	9
257	4	3	3.5	10.5	3	1	5	3.0	3.0	1	2	0	1.0	5.0	3	3	2	2.7	2.7	1	1.0	2.0	23.2	7
277	5	3	4.0	12.0	3	1	5	3.0	3.0	1	2	0	1.0	5.0	2	3	2	2.3	2.3	1	1.0	2.0	24.3	5
302	5	3	4.0	12.0	1	1	5	2.3	2.3	0	3	0	1.0	5.0	2	2	2	2.0	2.0	1	1.0	2.0	23.3	6
333	5	3	4.0	12.0	3	2	5	3.3	3.3	2	4	0	2.0	10.0	3	4	3	3.3	3.3	3	3.0	6.0	34.7	1
368	5	1	3.0	9.0	3	2	5	3.3	3.3	1	4	0	1.7	8.3	4	1	3	2.7	2.7	1	1.0	2.0	25.3	4
590	4	3	3.5	10.5	1	1	5	2.3	2.3	1	3	1	1.7	8.3	3	2	2	2.3	2.3	3	3.0	6.0	29.5	2

Outline

- Exfiltration Evaluation- Case Studies
- Regulatory Framework Connections
- Next Steps

Watershed-based Planning

DUDEK

Collection System Overview

DUDEK

Infrastructure/Monitoring Connection

DUDEK

Infrastructure/Monitoring Connection

DUDEK

Case Study- Typical Monitoring Data

WMA			Ca	Carlsbad Watershed Management Area									
HA	1	Buena Vista Cree (904.20)	ķ			Agua Hedionda (904.30)							
Subsur terr hed		El Sairo (904.21)	Van (904.22)		BVC-TPMS-I Summary		(1E.406) sanajyria	(EE + 06) curves					
Analyte	7	% > Criteria	M		%> Criteria	R	%> Criteria	78	%> Criteria				
pH	0	NA	NA	0	NA	0	NA	1*	0%				
Nitrate as N	0	NA	NA	0	NA	0	NA	1*	100%				
Nitrate/Nitrite as N	5	0%	NA	-	0%	3	0%	1*	100%				
Nitrite as N	0	NA	NA	0	NA	0	NA	1*	0%				
Total Nitrogen (cal	5	80%	NA	3	67%	3	67%	1*	100%				
Total Phosphorus	5	100%	NA	3	100%	3	100%	1*	100%				
Dissolved Phospho	0	NA	NA	0	NA	0	NA	0	NA				
Total Suspended Se	5	0%	NA	3	0%	5	20%	1*	0%				
Total Dissolved So	2	100%	NA	2	100%		AL.	1*	100%				
Fecal Coliform	5	60%	NA	3	100%	5	80%	1•	100%				
Enterococcus	5	100%	NA	3	100%	5	60%	1*	100%				
Ammonia as N	0	NA	NA	0	NA	0	NA	0	NA				

Carlsbad WMA 2011-2012 Dry Weather MS4 Summary

Outline

- Exfiltration Evaluation- Case Studies
- Regulatory Framework Connections
- Next Steps

Potential for Proactive Evaluation

- Desktop assessment to identify potential priority sewer exfiltration/MS4 infiltration locations
- Coordinated with regional/local MS4 monitoring programs
 - Source ID- areas with high bacteriological concentrations
 - Human DNA marker/other studies
- Strategic coordination with CIP/pipe rehab
 - Potential to align desktop priority locations with ongoing projects to inform comprehensive asset management approach

Bryn Evans cpswQ

bevans@dudek.com

760 479 4143

© Stewart Turkington

